
SAMPLE Security Assessment Report

ECR Security
Assessment Report

For:

SAMPLE

Page 1 of 18

SAMPLE Security Assessment Report

Revision History

Date Version Description Author

06/10/2019 1 Final report Brian Milliron

Page 2 of 18

SAMPLE Security Assessment Report

Table of Contents

Revision History pg. 2
Executive Summary pg. 4
Objective pg. 6
Assessment Scope pg. 6
Assessment Tools pg. 6
Target Systems pg. 7
Results Summary pg. 7
Severity 5 (Critical) Findings pg. 8

Finding 1 Raw API Exposed pg. 8
Finding 2 Password Hashes Exposed pg. 11
Finding 3 Weak Password Hashing Algorithm pg. 12

Severity 4 (High) Findings pg. 13
Finding 4 Cleartext Authentication pg. 13
Finding 5 Cross-Site Scripting pg. 15
Finding 6 Auth Cookie Missing Http Only Flag pg. 16

Severity 2 (Low) Findings pg. 17
Finding 7 Debug Console Enabled pg. 17

Vulnerability Classifications pg. 18

Page 3 of 18

SAMPLE Security Assessment Report

Executive Summary

Between 6/3/19 and 6/7/19, Brian Milliron conducted a security assessment of
the Conglomo web application. Several serious vulnerabilities were identified
which could compromise the confidentiality, availability, and integrity of the
application, as well as user accounts and the personal data of users.

Summary of Findings

Finding 1: Raw API Exposed
Severity Level: 5
Disposition: Open
Impact to Business: Non-privileged users can perform functions

which should be restricted to admins

Finding 2: Password Hashes Exposed
Severity Level: 5
Disposition: Open
Impact to Business: Password hashes are exposed to all users

Finding 3: Weak Password Hashing Algorithm
Severity Level: 5
Disposition: Open
Impact to Business: Weak password hashes enable recovery of

original password and unauthorized access

Finding 4: Cleartext Authentication
Severity Level: 4
Disposition: Open
Impact to Business: Allows an attacker on the same local network

to capture passwords

Page 4 of 18

SAMPLE Security Assessment Report

Finding 5: Cross-Site Scripting
Severity Level: 4
Disposition: Open
Impact to Business: Allows an attacker to inject malicious code

into the session of another user

Finding 6: Auth Cookie Missing Http Only Flag
Severity Level: 4
Disposition: Open
Impact to Business: Allows an attacker to steal the authentication

cookie and login session of another user

Finding 7: Debug Console Enabled
Severity Level: 2
Disposition: Open
Impact to Business: Aids an attacker in gaining unauthorized

access.

Vulnerability Severity Levels

5 4 3 2 1

Number of
Findings

3 3 0 1 0

Page 5 of 18

SAMPLE Security Assessment Report

Objective

The objective of the security assessment is to provide an assessment of the
security posture of the Conglomo web application. This report helps by gauging
issues found during the assessment against industry standards, corporate policy,
and the knowledge of the assessors.

Assessment Scope

The security assessment was focused on the Conglomo web apllication hosted
on the server at X.X.X.X. No testing was done on the server itself or supporting
infrastructure. The results from this test are not intended to be an assessment of
all applications, or entire infrastructure, and pertain only of those targets
identified within this assessment’s scope. While changes to the infrastructure,
application code, configurations and architectures may always be in progress,
the assessment provided in this report only presents those issues which existed
during the assessment period. Findings listed in this report are a snapshot of the
issues discovered, which existed during the assessment period, and may not be
current. Findings discussed in this document are representative of issues in
general and may not list all instances of a specific issue. The assessment also
did not perform any denial of service (DoS) attacks against the network, its
subsystems, devices or applications in order to minimize the potential of
interrupting operations.

Assessment Tools

A variety of automated and manual tools are used to increase the thoroughness
of the analysis as well as to increase efficiency and promote the re-usability and
standardization of components. The following list of tools are the most common
that are used, but may not be all inclusive.

 Standard web browser
 Burp web proxy

Page 6 of 18

SAMPLE Security Assessment Report

Target Systems

This Assessment was conducted in the following environments:

 Test

The following IP Address(es) and/or URL’s were assessed:

 http:// X.X.X.X

Security Assessment Results

While some effort has been made to restrict the application functionality to only
authorized users, the security controls currently in place are not sufficient to
protect the application data and functionality. Several vulnerabilities allow
unprivileged users to gain unauthorized access to privileged accounts and/or
bypass access controls. In many cases these vulnerabilities can be chained
together to increase the impact and level of exposure.

Findings 1,2 and 3 are part of a vulnerability cluster where each vulnerability
increases the severity and impact of the others. Likewise findings 5 and 6 are
also part of a vulnerability cluster. Remediating any single vulnerability which is
part of a cluster reduces the severity and impact of the others.

Page 7 of 18

SAMPLE Security Assessment Report

Severity 5 (Critical) Findings

Finding 1: Raw API Exposed

Asset(s) Affected:

http://X.X.X.X/api/raw/

Issue: The raw API is exposed to unprivileged users

Description: The API has no access control to prevent access by unauthorized
users. It should not be accessible directly from the web interface and should only
be accessed by the application itself after authentication checks have been
performed. It has in fact been disabled in the regular configuration for this
reason, but it can easily be re-enabled by sending a GET request to the
/api/enabledebug url, at which point the Debug menu option shows up on the
navigation menu and the /api/raw url becomes available.

Page 8 of 18

SAMPLE Security Assessment Report

The API has no authorization controls and will take actions based on any well
formed request. Users can easily generate well formed requests by attempting
to perform a prohibited action and saving the base64 encoded request, then
pasting it into the “Request” form field of the API Debug interface. The API will
then perform the prohibited action on behalf of the user.

This screenshot shows the user attempting to update the payment method
details, which is a prohibited action.

Page 9 of 18

SAMPLE Security Assessment Report

This screenshot shows the user inputing the payment change request into the
API Debug page.

This screenshot shows the final result.

Page 10 of 18

SAMPLE Security Assessment Report

Recommendations: Remove the ability for the user to access the raw
API.

Finding 2: Password Hashes Exposed

Asset(s) Affected:

http:// X.X.X.X/api/raw

Issue: The Raw API exposes user password hashes

Description: User password hashes are very sensitive information which some
attempt has been made to protect by redacting them from showing up in the
Users page. However the Raw API exposes them in full unredacted form. This
can enable a malicious user to “crack” the hash and reveal the original password
which can then be used to login as any user, including the administrator.

Recommendations: Remove the ability for users to view raw password
hashes.

Page 11 of 18

SAMPLE Security Assessment Report

Finding 3: Weak Password Hashing Algorithm

Asset(s) Affected:

http://X.X.X.X/

Issue: User passwords are hashed using the weak MD5 hashing algorithm

Description: Passwords are hashed to provide additional protection in the
event that the application is compromised by forcing the attacker to undertake
the additional step of cracking the hashes prior to being able to use them to login
as another user. The stronger the hashing algorithm, the longer it takes to crack
the hashes. The MD5 hashing algorithm is one of the weakest. Additionally the
hash function does not use a salt, which makes it even easier for an attacker who
has access to MD5 rainbow tables. Practically speaking, an attacker who gains
access to these password hashes can crack them in under an hour and quickly
turn them into usable passwords for further attacks on the application.

Recommendations: Use a strong hashing algorithm such as scrypt or bcrypt
to resist cracking attempts. Additionally use a unique salt prior to hashing so that
an attacker will be unable to use pre-computed rainbow tables to crack the hash.

References:
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/
Password_Storage_Cheat_Sheet.md

Page 12 of 18

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md

SAMPLE Security Assessment Report

Severity 4 (High) Findings

Finding 4: Cleartext Authentication

Asset(s) Affected:

http://X.X.X.X/login

Issue: The web application allows login credentials to be transmitted over
cleartext

Description: The application allows users to connect to it over unencrypted
connections. An attacker suitably positioned to view a legitimate user's network
traffic could record and monitor the user login credentials in order to impersonate
the user or gain unauthorized access to resources. Furthermore, an attacker able
to modify traffic could use the application as a platform for attacks against its
users and third-party websites.

To exploit this vulnerability, an attacker must be suitably positioned to eavesdrop
on the victim's network traffic. This scenario typically occurs when a client
communicates with the server over an insecure connection such as public Wi-Fi,
or a corporate or home network that is shared with a compromised computer.
Common defenses such as switched networks are not sufficient to prevent this.

Page 13 of 18

SAMPLE Security Assessment Report

Recommendations: Applications should use transport-level encryption (SSL/
TLS) to protect all communications passing between the client and the server.
The Strict-Transport-Security HTTP header should be used to ensure that clients
refuse to access the server over an insecure connection.

References:
https://en.wikipedia.org/wiki/Transport_Layer_Security

Finding 5: Cross-Site Scripting

Asset(s) Affected:

http://X.X.X.X/users

Issue: The web application uses bootstrap v3.3.7 which is known to have
cross-site scripting (XSS) vulnerabilities in the data-target, data-template, data-
content, data-title, and data-viewport attributes

Description: The Conglomo web application is vulnerable to a stored XSS
attack where the attacker can be any user with write access to any form field. In
this example the users table containing contact and other personal information
for users was poisoned with a malicious javascript. Even though html tags are
being properly escaped, javascript can still be saved in the table and will run
whenever that user data is viewed by anyone.

XSS allows attackers to inject malicious code into an otherwise benign website.
These scripts acquire the permissions of scripts generated by the target website
and can therefore compromise the confidentiality and integrity of data transfers

Page 14 of 18

https://en.wikipedia.org/wiki/Transport_Layer_Security

SAMPLE Security Assessment Report

between the website and client. Websites are vulnerable if they display user
supplied data from requests or forms without sanitizing the data so that it is not
executable. Stored attacks are those where the injected script is permanently
stored on the target servers, such as in a database, in a message forum, visitor
log, comment field, etc.

The attacker-supplied code can perform a wide variety of actions, such as
stealing the victim's session token or login credentials, performing arbitrary
actions on the victim's behalf, and logging their keystrokes.

Recommendations: Upgrade to the latest version of bootstrap

References:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://snyk.io/test/npm/bootstrap/3.3.7

Page 15 of 18

https://snyk.io/test/npm/bootstrap/3.3.7
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS

SAMPLE Security Assessment Report

Finding 6: Auth Cookie Missing Http Only Flag

Asset(s) Affected:

http://X.X.X.X/

Issue: The capp cookie does not have the Http Only flag set

Description: The web application uses the capp cookie to control the session
state. Because it doesn’t have the Http-Only flag, this means a malicious
javascript can read the cookie value. This greatly increases the severity of the
previous XSS vulnerability because now an attacker can copy the session cookie
of a logged in user, including the administrator, and use it in his own session,
gaining access to the compromised account.

Recommendations: Set the Http Only flag on the capp cookie. If the
HttpOnly attribute is set on a cookie, then the cookie's value cannot be read or
set by client-side JavaScript. This measure makes certain client-side attacks,
such as cross-site scripting, harder to exploit by preventing them from trivially
capturing the cookie's value via an injected script.

References:
https://www.owasp.org/index.php/HttpOnly

Page 16 of 18

https://www.owasp.org/index.php/HttpOnly

SAMPLE Security Assessment Report

Severity 2 (Low) Findings

Finding 7: Debug Console Enabled

Asset(s) Affected:

http://X.X.X.X/

Issue: The debug console is enabled and accessible to all users

Description: The debug console displays detailed information about the web
application which would be useful in tailoring an attack. It can be accessed by
any user simply by pressing the ~ key. It will show the api requests and
responses, which can be fed into the Raw API to facilitate attacks.

Recommendations: Disable debug console

Page 17 of 18

SAMPLE Security Assessment Report

Vulnerability Classifications

Table Vulnerability Severity Scoring

Severity of
Issue

Severity
Level

Criteria
Mitigation
Plan Date

Mitigate by
Date

Critical 5

Serious and immediate threat to
enterprise; confidentiality, integrity or
availability of a critical resource could
be compromised

n/a

Mitigation
should
commence
immediately

High 4
Serious threat to application or critical
resource

optional 0 – 4 weeks

Medium 3
Moderate threat to application or
critical resource

2 weeks 0 – 8 weeks

Low 2
Minor threat to application or critical
resource

4 weeks 4 – 24 weeks

Informational 1 General security information n/a n/a

Page 18 of 18

	Vulnerability Classifications

